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ABSTRACT 
 
 

 A theoretical and experimental study of signal propagation through a series of 

cascaded rectangular cavities connected by walls containing narrow slots and with thin-

wire probes/posts inside the cavities is presented. Coupled integral equations are 

formulated in terms of the electric current on the probes and the equivalent magnetic 

current in the slots and a numerical solution technique based on the moment method is 

used to solve them.  

The Ewald method is employed to accelerate the convergence of the free-space 

periodic Green’s function appearing in the kernel of the integral equations. The Ewald 

splitting parameter is determined using a special method (D. Jackson, private 

communication) which allows for good accuracy in the summations over a wide band of 

frequencies. The need to further speed up the computation led to the usage of matrix 

interpolation techniques wherein matrix elements are computed by direct means at only a 

few frequencies and then interpolated at many interior frequencies. Numerical results for 

the input impedance of the probe and shielding effectiveness are presented for various 

values of cavity parameters. 

 The shielding effectiveness, a means of determining the influence of the 

transmission path (and environment) on the shape and magnitude of a transient exciting 

signal, is evaluated. It is hoped that this study will shed additional light on how the 

transmission path affects the characteristics of a signal which enters a complex electronic 

environment and reaches an interior point deep inside where a digital circuit may be 

located.  
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CHAPTER 2 

ANALYSIS OF SLOT-COUPLED CASCADED     

RECTANGULAR CAVITIES 

 

Coupled integral equations and a numerical solution technique based on the 

moment method for slot-coupled cascaded rectangular cavities are presented in this 

chapter. The cascaded rectangular cavities have thin-wire probes/posts present in them. 

Free-space periodic Green’s functions are derived for the equivalent magnetic current in 

the slot and the electric current on the probe for a single rectangular PEC cavity. The 

integral equations for an arbitrary number of slot-coupled cascaded rectangular cavities 

are then developed as a general case. 

1. INTRODUCTION 

The two methods that are commonly used for electromagnetic analysis are the 

mode-theory formulation [1, 2] and the image-theory formulation [3], with the latter 

being employed in this work. The free-space periodic Green’s function appearing in the 

kernel of the integral equations is obtained from the summation of the elements derived 

from image-theory analysis. The structure of primary interest is a series of slot-coupled 

cascaded rectangular cavities with an arbitrary number of sections that contain thin-wire 

probes/posts and which are flanked by infinite PEC screens at both ends. In general, a 

plane-wave or a current excitation may be used to excite the narrow slots, or a voltage 
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source may be used to excite the probes in the cavities. The analysis of this structure 

requires the solution of coupled integral equations which include the free space periodic 

Green’s function as part of their kernels. The coupled integral equations are solved by the 

method of moments [4].  

2. ANALYSIS OF A SINGLE RECTANGULAR CAVITY 

To analyze the structure shown in Fig. 2-3 for the dipole excitation, one must first 

derive the Green’s function for an �x − directed magnetic dipole and a ŷ − directed electric 

dipole in a rectangular PEC cavity of width 2a , height 2b , and depth c . The geometry 

for this structure is shown in Fig. 2-1. 

xM ( , )µ ε

2a

2b

c

y
x

z

yI

 

Fig 2-1. An �x − directed unity strength magnetic dipole and a ŷ −directed unity 
strength electric dipole inside a rectangular PEC cavity. 

 

The electric vector potential Green’s function for the �x − directed magnetic dipole located 

at a point ( , , )′ ′ ′x y z  inside the cavity must satisfy the differential equation 

 2 2( ) ( , , ) ( ) ( ) ( ) ,xG x y z x x y y z zβ ε δ δ δ′ ′ ′∇ + = − − − −  (2.1) 

where 



 8

 β ω µε=  (2.2) 

and the medium inside the cavity is characterized by ( , )µ ε . The boundary conditions on 

the cavity walls are 

   ( , , ) 0 for ,xG x y z x a
y
∂

= = ±
∂

 (2.3) 

 ∂
∂

= = ±
y

G x y z y bx ( , , ) 0 for   (2.4) 

and 

 ( , , ) 0 for 0 and  .xG x y z z z c
z
∂

= = =
∂

 (2.5) 

In the image-theory formulation [3, 5] the source is first imaged across the cavity 

walls as shown in Fig. 2-2. The rectangle shown in the figure with the dashed lines 

represents one unit cell and determines the periodicity of the structure in the x  and y  

directions. The magnetic dipole shown in the rectangle with solid lines is the original 

dipole which is imaged along the x  and y  directions repeatedly to obtain the periodicity 

seen in the figure. The Green’s function, which satisfies the differential equation given in 

(2.1), the boundary conditions given in (2.3), (2.4) and (2.5), and the radiation condition, 

can be obtained by summing the free-space Green’s function for each dipole. The free 

space periodic Green’s function for an �x − directed magnetic dipole located at a point 

( , , )′ ′ ′x y z  in a medium characterized by ( , )µ ε  is given as 
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2a

2b

. . .

.

.

.

.

.

.

. . .

xMxM−
Original
Cavity

Unit Cell

y

x

 
 

Fig. 2-2.  Images of an x̂ − directed magnetic dipole inside a rectangular PEC cavity. 

 ,
4

j R

x
eG

R

β

ε
π

−

=  (2.6) 

where 

   R x x y y z z= − ′ + − ′ + − ′b g b g b g2 2 2  . (2.7) 

Thus, if all the contributions are counted, the image-theory Green’s function for an 

�x − directed magnetic dipole inside a rectangular PEC cavity is  

 

1 2 3 4

5 6 7 8

, , 1 2 3 4

5 6 7 8

4

,

mnp mnp mnp mnp

mnp mnp mnp mnp

j R j R j R j R

x
m n p mnp mnp mn p mnp

j R j R j R j R

mnp mn p mnp mnp

e e e eG
R R R R

e e e e
R R R R

β β β β

β β β β

ε
π

− − − −∞

=−∞

− − − −

 = − − +   
 + − − +   

∑
 

(2.8)
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where the 8 contributions are a result of 8 magnetic dipoles in one unit cell as shown in 

Fig 2-4. The different signs on the contributions are due to the x̂ -directed and the x̂− -

directed magnetic dipoles, as shown in Fig. 2-2. Also,  

 ( ) ( )22 2( ) ,             1,  ... ,8mnpi i x i y i zR mD nD pD iξ η ζ= − + − + − =  (2.9) 

and the terms ξ i , ηi , and iζ  are  

   1 4 5 8 x xξ ξ ξ ξ ′= = = = − , (2.10) 

   2 3 6 7 2x x aξ ξ ξ ξ ′= = = = + − , (2.11) 

 1 2 5 6 y yη η η η ′= = = = − , (2.12) 

  3 4 7 8 2y y bη η η η ′= = = = + − , (2.13) 

 1 2 3 4 z zζ ζ ζ ζ ′= = = = − , (2.14)  

  5 6 7 8 2z z cζ ζ ζ ζ ′= = = = + − , (2.15) 

and Dx , Dy , and zD  are given by 

  4xD a= , 8yD b=  and 4 .zD c=  (2.16) 

The terms Dx , Dy , and zD  represent the periodicity of the structure in the x , y  and z  
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directions, respectively. Similarly, the image-theory Green’s function for a ŷ−directed 

electric dipole located at a point ( , , )′ ′ ′x y z  inside a rectangular PEC cavity is written as 

     

1 2 3 4

5 6 7 8

, , 1 2 3 4

5 6 7 8

( , )

,

mnp mnp mnp mnp

mnp mnp mnp mnp

j R j R j R j R

y
m n p mnp mnp mnp mnp

j R j R j Rj R

mnp mnp mnp mnp

e e e eG r r
R R R R

e e e e
R R R R

β β β β

β β ββ

− − − −∞

=−∞

− − −−

   ′ = − − +    
  − − − +    

∑
  

(2.17)

 

where the terms have their usual meanings and the 8 contributions are a result of 8 

electric dipoles in one unit cell as shown in Fig 2-4.  

 In Fig. 2-3(a), the structure under examination is a rectangular PEC cavity 

between two infinite PEC screens with narrow slots in them. Inside the cavity is a thin-

wire probe which may connect via a 50Ω  coaxial cable to a signal source having an 

internal impedance of 50Ω . The side view of the structure is illustrated in Fig. 2-3(b). As 

seen from the figure, the length of the thin-wire probe is h  and its radius is r . The probe 

axis is located in the yz  plane with d  representing its displacement from the 0z =  

plane. The slots are centered on each face of the rectangular cavity and their lengths are 

1 22  and 2L L , respectively, with their widths being 2w . The width, height, and depth of 

the cavity shown in the figure is 2a , 2b  and c , respectively. The medium inside, in the 

left half-space where 0z < , and in the right half-space where z c> , is characterized by 

( , )µ ε .  

The complete 3D unit cell due to imaging is shown in Fig. 2-4. In the figure, the 

cavity shown with solid lines is the original rectangular cavity and the cavities shown 

with dashed lines represent the image cavities. The electric current on the probe and the 
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magnetic current in the slot are imaged simultaneously. The resulting unit cell has 8 

magnetic dipoles, as shown in Fig. 2-4, due to the images of slot current 1xM  on the 

cavity wall. The images of the slot current on cavity wall 2, designated as 2xM , 

contribute to 4 magnetic dipoles in the unit cell. The current yI  on the probe has 8 

contributions in the unit cell. A rectangular cavity with 2 narrow slots is pictured in Fig. 

2-3 to show the presence of 8 magnetic dipoles due to wall 1 and 4 due to wall 2 in the 

same unit cell. The Green’s function for an x̂ − directed magnetic dipole on slot 2 inside a 

rectangular PEC cavity is presented in the next section. 

The  and  xy xz  plane imaging is shown in Fig. 2-5 for a single cavity which can 

be generalized to an arbitrary number of cascaded rectangular cavities. The rectangle in 

darker solid lines represents the original cavity and it is imaged about the xy  and the xz  

planes successively.  
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(a) 

  
 

(b) 
 
Fig. 2-3. A rectangular PEC cavity between two infinite PEC screens with narrow 

slots in them and with a thin-wire probe inside. (a) perspective view  (b) side 
view 
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Fig. 2-4. Complete 3D unit cell of a rectangular PEC cavity with two slots and one 
probe. 
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Fig. 2-5.   Equivalent model for interior region with imaging about  and  xy xz  planes 
(single rectangular PEC cavity with two slots and one probe) - side view 
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3. ARBITRARY NUMBER OF SLOT-COUPLED CASCADED RECTANGULAR CAVITIES 

A general case of an arbitrary number J  of slot-coupled cascaded rectangular 

cavities is pictured in Fig. 2-6. Each cavity has a thin-wire probe/post in it and any probe 

can be connected via a 50Ω  coaxial cable to a signal source having an internal 

impedance of 50Ω . The last rectangular section is the thJ  cavity and the sections 

between the first and the last rectangular cavity are denoted by j . The width, height, and 

depth of each cavity shown in the figure is 2a , 2b  and c , respectively. The length of the 

jth thin-wire probe is jh  and its radius is r . The probe axes are located in the yz  plane 

with 1d , …, ( 1)* jj c d− + , ..., ( 1)*  JJ c d− +  representing their displacements from the 

0z =  plane. The length of the jth slot is 2Lj and its width is 2w . The medium inside each 

cavity, in the left half-space where 0z < , and in the right half-space where ( * )z J c>  is 

characterized by ( , )µ ε .  

The procedure followed in the previous section is utilized again and the general 

problem of an arbitrary number of slot-coupled cascaded rectangular cavities is broken 

down into single cavities. The treatment is essentially the same and the unit cell obtained 

due to image theory in Fig. 2-4 is used separately for each cavity. The procedure by 

which one may derive the coupled integral equations for a thin-wire behind an infinite 

PEC screen is discussed in [5]. In [3], Kustepeli describes the coupled integral equations 

for a narrow slot in an infinite PEC screen backed by a single rectangular PEC cavity 

with a thin-wire probe inside it.  
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Fig. 2-6. Arbitrary number of slot-coupled cascaded rectangular cavities with thin-wire 

probes in them – (a) perspective view.  (b) side view. 
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The formulation discussed in [3] has been extended in this work to an arbitrary 

number of slot-coupled cascaded rectangular cavities. As an aid in the formulation of the 

coupled integral equations for the structure of interest, the equivalent models for the 

interior and exterior regions of the structure are developed. The tangential magnetic field 

is then forced to be continuous in the apertures and the total tangential electric field on 

the thin-wire probes in each cavity is made zero. The resulting coupled integral equations 

derived for the electric current on the probes and the equivalent magnetic current in the 

slots are presented for the structure shown in Fig. 2-6. The equations (2.18) and (2.21) are 

the coupled integral equations for slot 1 and slot 1J +  where the slot has been shorted 

and a short-circuit magnetic current is placed in its position. Equation (2.20) is the 

coupled integral equation for slot j  where 1 1j J< < + . The total tangential electric field 

on the thin-wire probes is made zero and the resulting coupled integral equation is listed 

in (2.19).  
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  ′ ′ ′ ′ ′+ − +   

′ ′ ′+

  ′ ′ ′− +   

=−

∫

∫

∫

  

(2.18)
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In equations (2.18-2.21), the axial variation of the magnetic current on slot j  is given by 

( )jm x  and the electric current on the thin-wire probe j  is given by ( )jI y . In equation 

(2.19), the voltage at the center of probe j  is given by jV . The delta function, ( )y bδ +  in 

(2.19) specifies that jV  on probe j  is located at the y b= −  plane. The short-circuit 

magnetic field, 
j

sc
xH  in (2.18), (2.20) and (2.21) is the field at the location of slot j  when 

it is shorted. 

The contribution to the kernel due to slot 1, 
1s

K ′  in (2.18) is written as 

   
1

1

1

1( ) ,
2

sjKR

s

s

eK x x
R

π

ππ

′−

−

′ ′− =
′∫   (2.22) 

where 

                                                  
1

2 2 22( ) 4( ) sin
4 2s
wR x x α′′ ′= − +   (2.23) 

In equation (2.21), 
1Js

K
+
′ is the kernel due to slot 1J +  and it can be defined like 

1s
K ′  in 

(2.22). The third term of (2.20), j

j

s
cvK  due to the presence of slot j  in cavity  j  is written 

as 

                                  2 2

1/ ( ( ,0, ; , , )

( ,0, ; , 2 , )) ,        1,  ...,  1.

j j

j

j

w
s s
cv

y w

s

K G x z x y z
w y

G x z x b y z dy j J

π

′=−

′ ′ ′=
′−

′ ′ ′ ′+ − + = +

∫   
(2.24)

  

The Green’s function js
dG  in (2.19) is given by 



 20

              
( , , ) (0, , ; , , )

(0, , ; , 2 , ),        1,  ...,  ,

j j

j

s s
d

s

G y x y G y z x y z
z

G y z x b y z j J
z

∂′ ′ ′ ′ ′=
∂

∂ ′ ′ ′+ − + =
∂

  
(2.25)

 

where jsG  in (2.24) and (2.25) is equivalent to xG  in (2.8). In (2.20) 1j

j

s
cvK +  due to the 

presence of slot 1j+  in cavity j  is written as                                   

        
1 1 1

1 1

2 2

1/ ( ( ,0, ; , , * ) ( ,0, ; , 2 , * )

( ,0, ; , , * ) ( ,0, ; , 2 , * )) ,   1,  ...,  ,

j j j

j

j j

w
s s s
cv

y w

s s

K G x z x y j c G x z x b y j c
w y

G x z x y j c G x z x b y j c dy j J

π+ + +

+ +

′=−

′ ′ ′ ′= + − +
′−

′ ′ ′ ′ ′+ − + − + − =

∫   
(2.26)

 

and 1js
dG +  in (2.19)  is written as 

  

1 1 1

1 1

( , , ) (0, , ; , , * ) (0, , ; , 2 , * )

(0, , ; , , * ) (0, , ; , 2 , * ),   1,  ...,  .

j j j

j j

s s s

s s

G y x y G y z x y j c G y z x b y j c
z z

G y z x y j c G y z x b y j c j J
z z

+ + +

+ +

∂ ∂′ ′ ′ ′ ′ ′= + − +
∂ ∂

∂ ∂′ ′ ′ ′+ − + − + − =
∂ ∂

  
(2.27)

 

In (2.26) and (2.27), 1jsG +  is the image-theory Green’s function for an x̂−directed 

magnetic dipole inside a rectangular PEC cavity and is written as 

 
1 2 3 4

1

, , 1 2 3 4

( ; ) ,
mnp b mnp b mnp b mnp b

j

j R j R j R j R
s

m n p mnp b mnp b mnp b mnp b

e e e eG r r
R R R R

β β β β
+

− − − −∞

=−∞

   ′ = − − +      
∑   (2.28) 

where the 4 contributions are as a result of 4 magnetic dipoles in one unit cell as shown in 

Fig 2-4 for the magnetic current on slot 2 and  

                ( ) ( )22 2( ) ,          1, 2,3,4.mnpib ib x ib y ib zR mD nD pD iξ η ζ= − + − + − =  (2.29) 
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where xD , yD , and zD  are defined in (2.16) and 

       1 4 ,b b x xξ ξ ′= = −   (2.30) 

       2 3 2 ,b b x x aξ ξ ′= = + −   (2.31) 

       1 2 ,b b y yη η ′= = −   (2.32) 

       3 4 2 ,b b y y bη η ′= = + −   (2.33) 

and 

       1 2 3 4 .b b b b z zζ ζ ζ ζ ′= = = = −   (2.34) 

The kernel due to the presence of the probe inside the cavity, j

j

p
cvK , is written as 

       
1( , ) ( ( , , ; cos , , sin )

2

( , , ; cos , , sin )) ,       1,  ...,  ,

j j

j

j

p p
cv j j

p
j j

K y y G r y d r b y d r

G r y d r b y d r d j J

π

π

φ φ
π

φ φ φ
−

′ ′= − + +

′− − + − + =

∫   
(2.35)

 

and jp
d
G  in (2.18) and (2.20) is written as 

       
( , ) ( , , ;0, , )

( , , ;0, , ),         1,  ...,  .

j j

j

p p
jd

p
j

G x y G x o z b y d
z

G x o z b y d j J
z

∂′ ′= − +
∂

∂ ′− − + − =
∂

  
(2.36)
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In (2.35) and (2.36), jpG  is the image-theory Green’s function for a ŷ−directed electric 

dipole inside a rectangular PEC cavity and is similar to yG  in (2.17).  

4. NUMERICAL SOLUTION 

The coupled integral equations given in (2.18-2.21) are solved by the method of 

moments [4]. In this method the unknown magnetic currents ( )jm x  and the unknown 

electric currents ( )jI y  are expanded in terms of the pulse basis functions, each weighted 

by unknown coefficients 
jnm and 

jni , respectively. The triangle functions are used for 

testing. Detailed information about expansion and testing procedures is given in [4, 7]. 

The resulting matrix equation is written as 

1 1
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where 
, 1 1,

,  ,  and 
i i i i imn mn mnY Y Y

+ +
are the admittance terms due to the slots. The elements of 

the sub-matrices representing coupling from the probe to the narrow slot are given by 

i is p
mnC  and i ip s

mnC  represents the slot-to-probe coupling terms. The impedance sub-matrix 

term for the probe is ip
mnZ . The expression for the elements of the admittance sub-matrix 

imnY  is given by 

 ,     1 or ,i i

i i i

s cv
mn mn mnY Y Y i J= + =   (2.38) 

where 

 
{

}

/ 2
2

1
/ 2

1

1 ( ) 2(1 ( ) / 2) ( )
2

( ) .

n si

i

i i i i

i n si

i

x
s

mn s m s s m
s x

s m

Y K x x K x x
j

K x x dx

β
πωµ

+∆

+
−∆

−

′ ′ ′ ′= − − − ∆ −
∆

′ ′ ′+ −

∫
  

(2.39)
 

In (2.39) mx  and nx  can be determined from 

 ,   1, 2,...,
ip i sx L p p N= − + ∆ =   (2.40) 

with p  standing for m  or n . The sub-domain segment length 
is∆  is given by 

 2
( 1)i

i
s

L
N

∆ =
+

  (2.41) 

In (2.40) and (2.41), N  is the number of basis functions used to approximate the 

magnetic current in the slot. One can write i

i

cv
mnY  as 
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 { }2
1, 1,

1 2(1 ( ) / 2)
2

i

i i

i
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mn m n s mn m n

s

Y S S S
j

β
πωµ + −= − − ∆ +

∆
  (2.42) 

where 
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/ 2
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i
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x
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mn cv m
x

S K x x dx
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−∆

′ ′= ∫   (2.43) 

The expression for the elements of the admittance sub-matrix 
1,i imnY
+

 is given by 

 
1, 1

,     1,  ...,  ,i

i i i

cv
mn mnY Y i J

+ +
= =   (2.44) 

where 
1

i

i

cv
mnY

+
 and elements of the sub-matrix 

, 1i imnY
+

 appearing in (2.37) are defined like 

i

i

cv
mnY  of (2.42). 

 In (2.37), the elements of the sub-matrix i is p
mnC  representing the coupling from the 

probe to the slot is given by 

 
/ 2 / 2

/ 2 / 2

1 ( , ) ,       1,  ...,  ,
4

m s n wi i

i i i

m s n wi i

x y
s p p
mn d

x y

C G x y dy dx i J
π

+∆ +∆

−∆ −∆

′ ′= =∫ ∫   (2.45) 

and 

 ,     1, 2,..., .
in i wy h n n P= − + ∆ =   (2.46) 

The width of a pulse basis function used to expand the electric current on the probe is 

defined as  
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 2
( 1)i

i
w

h
P

∆ =
+

  (2.47) 

where P  in (2.46) and (2.47) is the number of unknowns used to expand the current. The 

elements of the sub-matrix 1i is p
mnC +  are defined like i is p

mnC  in (2.45). 

 In (2.37), the elements of the impedance sub-matrix ip
mnZ  is written as 

 { }2
1, 1,

1 2(1 ( ) ) ,     1,  ...,  ,
4

i

i

i

p
mn m n w mn m n

w

Z T T T i J
j

β
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∆
  (2.48) 

where 
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−∆

′ ′= ∫   (2.49) 

 The expression for the elements of the sub-matrix i ip s
mnC  appearing in (2.37) 

representing the coupling from the slot to the probe is given by 

       
/ 2 / 2

2 2
/ 2 / 2

1 1/  ( , , ) ,        1,  ...,  .
2

m w n wi i

i i i

m w n wi i

y x w
p s s

mn d
y x w

C G y x y dy dx dy i J
w y

π
π

+∆ +∆

−∆ −∆ −

′ ′ ′ ′= =
′−

∫ ∫ ∫   (2.50) 

The elements of the sub-matrix 1i ip s
mnC +  are defined like i ip s

mnC  in (2.50).  

Finally, the elements of the excitation vector in (2.37) are given by 

 
1,    *( )

2
   0,                        .

im

PV m P i J
V

otherwise

+ − = + += 


  (2.51) 
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For plane-wave excitation of the slot, the term 
imI  of (2.37) is given by 

   ( ),    ( 1)*   (1,  ...,  )
i i i

sc
m s x mI H x m i P P≅∆ = − +  (2.52) 

The approximation [5] employed in (2.52) is a very good one, provided 
i

sc
xH  does not 

vary rapidly over an interval of 2
is∆ . 

5. CONCLUSIONS 

In this chapter coupled integral equations and a numerical solution technique 

based on the moment method for slot-coupled cascaded rectangular cavities are 

presented. Free-space periodic Green’s functions for a magnetic dipole and an electric 

dipole in a rectangular PEC cavity are derived and coupled integral equations for an 

arbitrary number of slot-coupled cascaded rectangular cavities are then presented as a 

general case. In this chapter, a general solution is described as a precursor to a numerical 

solution for single, double, and triply cascaded rectangular cavities which are discussed 

in detail in Chapter 5. 

 

REFERENCES 
 

 [1]  C. L. Freeman, “Analysis and Design of Stripline-Fed Slot Antennas,” Clemson 
University, Dissertation, May 1996. 
 

 [2]  S. Hashemi-Yeganeh and C. Brichter, “Theoretical and Experimental Studies of 
Cavity-Backed Slot Antenna Excited by a Narrow Strip,” IEEE Trans. 
Antennas   Propagat., vol. 41, pp. 236-241, February 1993. 

 
 [3] A. Kustepeli, “Analysis and Implementation of the Ewald Method for Waveguide 

and Cavity Structures,” Clemson University, Dissertation, December 1999. 
 
 [4] R. F. Harrington, Field Computation by Moment Methods (MacMillan, New 

York, 1968). 



 27

 
 [5] C. M. Butler and K. R. Umashankar, “Electromagnetic Excitation of a Wire 

Through an Aperture-Perforated Conducting Screen,” IEEE Trans. Antennas 
Propagat., vol. 24, pp. 456-462, July 1976. 

 
 [6] A. Kustepeli and A. Q. Martin, “Fields and Currents due to a Modulated Laser 

Beam Exciting an Array of Narrow Slots,” in Proc., IEEE Antennas 
Propagat. Soc. Int. Symp., Montreal, Canada, July 1997, pp. 1240-1243. 

 
 [7] D. R. Wilton and C. M. Butler, “Effective Methods for Solving Integral and 

Integro-Differential Equations,” Electromagnetics, vol. 1, pp. 289-308, July-
Sept. 1981. 



 

CHAPTER 3 

EWALD METHOD AND DETERMINATION OF SPLITTING 

PARAMETER 

 

The free-space periodic Green’s function appears as the kernel of the integral 

equations formulated for slot-coupled cascaded rectangular cavities. The Ewald method 

[1, 2] can be used to efficiently accelerate the convergence of the infinite series 

encountered in the calculation of matrix elements obtained by employing the method of 

moments for the numerical solution of the integral equations. In this method, the free-

space periodic Green’s function is expressed as the sum of “spectral” and “spatial” series. 

Each of these series possesses Gaussian decay, leading to a series representation that 

typically has a very fast convergence rate. The spectral and spatial series are written in 

terms of the complementary error function, involving a splitting parameter E . The 

method of determining the splitting parameter and numerical results for the different 

choices of the splitting parameter are presented in this chapter. 

1. INTRODUCTION 

The Ewald method was first developed and used in 1921 by P.P. Ewald [1] to 

evaluate the summations occurring in crystal lattice theory. In the evaluation of the free-

space periodic Green’s function for two-dimensional and three-dimensional cases with 

the Ewald method, the spectral and the spatial series, which are written in terms of the 
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complementary error function, involve a splitting parameter E . In [9] it is stated that E  is 

an arbitrary number with an optimum value, optE , given to balance the convergence rate 

between these two series, thereby minimizing the total number of terms needed for the 

calculation. If E  is increased beyond optE , then successive terms in the spatial series 

decay faster while successive terms in the spectral series decay more slowly. In studies 

involving the Ewald method [9, 11], the optE  value is generally used to sum the spectral 

and the spatial series arising in the analysis of structures having small periodic spacing. 

Although it is stated in [9] that the splitting parameter is arbitrary, in [8], Kustepeli and 

Martin have shown that one cannot get correct results even when optE E=  for structures 

having large periodic spacing. Therefore, the splitting parameter should always be chosen 

carefully. 

 One can apply the Ewald method in calculating the free-space periodic Green’s 

function due to three-dimensional periodic arrays [1]. For the three-dimensional case in 

[10], the value of E  used in the computations is determined by examining only the 

convergence of the spatial series. For two-dimensional arrays, the choice of this 

parameter is very important as in the three-dimensional case, to balance the convergence 

rate in the analysis of structures with small periodic spacing and to obtain correct values 

in the analysis of structures having large periodic spacing. One can also use the Ewald 

method for the three-dimensional case after applying image-theory to the structure.  

2. DETERMINATION OF SPLITTING PARAMETER 

In [8], Kustepeli and Martin present an expression for optE  which can be used in 

the calculation of free-space periodic Green’s function for the three-dimensional case 
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having small periodic spacing. Results obtained by the Ewald method are compared with 

those obtained by the well-known Shanks’ transform [4, 5] computed using Wynn’s ε -

algorithm [6]. One of the most effective means for evaluating the Green’s function given 

in (2.6) of the previous chapter is the Ewald Method [1]. In this method, the Green’s 

function is expressed as the summation of two series such that 

   G G G= +1 2  . (3.1) 

In (3.1), G1  and G2  utilize the complementary error function, ( )erfc z . By virtue of the 

presence of the complementary error function in these series, a very rapid convergence 

rate, resulting from the Gaussian decay found in the terms, is achieved. Since Gaussian 

decay is involved in each, the value of the summation is generally obtained in a very 

small number of terms if E  is properly chosen. For the three-dimensional case, the 

Green’s function in (2.6) is expressed as a sum of two series as given in (3.1). The 

spectral series G1  is written as [3, 8] 
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and xD , yD  and zD  are given in (2.16). The spatial series G2  is given by [3, 8] as 
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where mnpR  is defined in (2.9). The optimum splitting parameter [3, 8] used to balance 

the convergence rates of 1G  and 2G  for the three-dimensional (3D) array is  
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The complementary error function appearing in the equations (3.4) and (3.5) is 

given by [3, 8] 
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where ( )erf ⋅ , the error function, is given by 
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By using the following relation, 
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2

( ) ( )zerfc z e w j z−=  , (3.9) 

the complementary error function appearing in the equations (3.4) and (3.5) is calculated. 

The function ( )w ⋅  in (3.9) is utilized to compute the complementary error function for a 

complex argument. This function, which was first devised and tabulated by Faddeyeva 

and Terent’ev [12], can be computed using a code written by Poppe and Wijers [13, 14].  

The method explained in [8] to determine / optE E  involves a splitting parameter 

which is said to be dependent on periodic spacing of a structure alone and the choice of 

which is more or less arbitrary. Jackson suggested a method [7] wherein the splitting 

parameter is not treated as arbitrary and is said to be dependent on periodic spacing, the 

number of significant figures lost in the calculation of the Green’s function and the 

frequency.  

The “optimum” E  parameter, ,optE  that results in the same asymptotic rate of 

decay for 1G  and 2G  is given in (3.6). At high frequencies, one gets very large nearly-

equal-in-magnitude numbers of opposite signs for the first several terms of 1G  and 2G  . 

These terms largely cancel one another, resulting in a sum that is of moderate value. 

However, this cancellation generally results in an apparent convergence to incorrect 

values and a loss of significant figures. To avoid this problem, one needs to limit the size 

of the largest terms in both series. Jackson [7] devised a method for choosing E  that is 

larger than the optimum, which solves this problem. 

The goal is to limit the size of the largest term relative to that of the overall 

Green’s function. The largest terms in each series come from the (0,0,0)  terms. One 

chooses a limit of 
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 1,000| |   10 | |dG G<  (3.10) 

and 

 2,000| |   10 | |,dG G<  (3.11) 

where 1G  and 2G  have their usual meanings, the subscript (0,0,0) refers to the first term 

of the series ( 0m n p= = = ) and the parameter “ d ” indicates the significant figures lost 

in the calculation of the Green’s function. The magnitude of the overall Green’s function 

is approximated as 
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This approximation is a reasonable one unless the distance between the source and 

observation points becomes comparable to the distance between the source point and the 

boundary of the unit cell (so that image terms are important). Even then, the above 

estimate is probably correct to within an order of magnitude. 

In Jackson’s method one uses the asymptotic form of the complementary error 

function (valid at high frequencies) and using (3.10) writes 1G  of (3.2) as  
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One can define 



 34

 000
1 ,x

E
α

≡ −  (3.14) 

then one gets 

 
2
1

1,
xe c=  (3.15) 

where 

 000

2

1
000

10 .x y zd D D D
c

R
α

π

  
=       

 (3.16) 

An accurate solution to the transcendental equation in (3.15) is given by 

 ( )1 1 1 1 1ln( ) ln ( ) ln ( ) ln ln( ) .x c c c c
  = + + +  

  
 (3.17) 

The inequality in (3.13) has to be maintained and hence the restriction that 
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rendering (3.13) true. 

The analysis for the 2G  series is similar using Jackson’s method. One uses the 

asymptotic form of the complementary error function (valid at high frequencies) and 

writes  



 35

 

2

2

000 000

2 110 .
8 4

2

k
E

de
k R R
E

π ππ

 
 
   

<     
 

 (3.19) 

One can write 
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then (3.19) becomes 
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The solution to the transcendental equation in (3.21) is given by 
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The inequality in (3.19) has to be maintained and hence the restriction that 
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Jackson’s method thus chooses an overall E  by comparing (3.6), (3.18) and (3.24) and 

writing 
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 (3.25)      

Kustepeli and Martin [8] and Jackson [7] have shown that optE E=  may not be sufficient 

for large periodic spacing and E  has to be increased beyond this value to achieve 

accurate results. The reason optE E≤  does not work for larger periodic spacing can be 

explained as follows. For large arguments the complementary error function behaves as 

2exp( ) /z z−  which is the reason for using this method for the calculation of the free-

space periodic Green’s function. For large periodic spacing, optE  given by (3.6) becomes 

small, and the imaginary part of the argument of ( )erfc ⋅  becomes large and dominant for 

the first several terms of the series. As a consequence, ( )erfc ⋅  becomes very large and, 

therefore, one gets very large numbers for the first several terms of these series. Similar 

comments can be made for the series G1 of (3.2) that includes the Gaussian function 

directly. Gaussian decay is again achieved for terms with large indices, and the two series 

1G  and 2G  converge to very large nearly-equal-in-magnitude numbers of opposite signs. 

Since the values of the spectral and the spatial sums are very, very large but have 

opposite signs, accuracy is seriously compromised when adding the sums of the two 

series because of finite precision. The result is the apparent convergence to incorrect 

values. By increasing E  beyond optE  by a sufficient amount, one obtains small values 

for the imaginary part of the argument of the complementary error function and small 
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positive values for −αmnp E2 2/  in (3.2) for the first several terms of the series. As a 

result, one avoids the inaccuracy resulting from adding numbers of nearly equal 

magnitude but of opposite sign, and a correct sum is obtained for G . Thus a value for E  

is chosen that is the maximum of (3.6), (3.18) and (3.24). 

3. RESULTS 

The following section compares Jackson’s method [7] of determining E  with an 

arbitrary method of determining E  and presents comparative results for the same. The 

geometry chosen for this analysis is shown in Fig. 3-1. As shown in the Fig. 3-1(a), the 

structure under examination is a narrow slot in an infinite PEC screen backed by a 

rectangular cavity with a thin-wire probe present inside the cavity. The side view of this 

structure is illustrated in Fig. 3-1(b). The length of the thin-wire probe is h  with its radius 

specified as r . The probe axis is located in the yz  plane with d  representing its 

displacement from the 0z =  plane. The slot length is 2L  and its width is 2w . The 

width, height, and depth of the cavity shown in the figure are 2 ,  2  and a b c , respectively. 

The medium inside the cavity and in the left half-space where 0z <  is characterized by 

( , )µ ε . The probe is connected via a 50Ω  coaxial cable to a signal source having an 

internal impedance of 50Ω . The structure parameters are shown in Table 3.1. 

The real and imaginary parts of the input impedance of the thin-wire probe for the 

structure given in Table 3.1 in the frequency range between 6 GHz and 12 GHz are 

shown in Fig. 3-2. In this figure, the measured data from [3] is compared with the 

numerical results obtained by using Jackson’s method and optE E= . The figure shows 

that the numerical results begin to fail when the frequency is increased while optE E= . 
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As shown in the figure, the real part of the computed input impedance becomes even 

negative for some frequencies when optE E= ; in addition, the results for the imaginary 

part are not even in the range of the figure above 10.4 GHz, showing a large error in the 

computation of these values. Since the value of the splitting parameter is not appropriate 

for the calculation of the matrix elements, error occurs in the calculation of the probe 

current and input impedance. The correct values of the matrix elements can be obtained 

by increasing the splitting parameter by a sufficient amount, which results in the correct 

values for the probe current and hence the input impedance. As shown in the figure, by 

using the Jackson’s method, one can get very good agreement between the measured [3] 

and the numerical results. Thus one can conclude from Fig 3-2, the optimum splitting 

parameter ( optE E= ) may not be suitable for some structures. Therefore, the splitting 

parameter should be chosen carefully and one may use Jackson’s method to determine 

the E  parameter without the need for guess work or trail and error. 

Variation of  / optE E  with Jackson’s  E  is smooth in the entire frequency range 

as shown in Fig. 3-3 compared to the arbitrary usage of optE E=  and 2 * optE E= . The 

other major consideration for employing Jackson’s method was CPU time reduction. 

CPU times for numerical results obtained by using optE E=  and 2 * optE E=  were 

compared to results obtained by using Jackson’s  E . As shown in Fig. 3-4, cumulative 

computation time is least for optE E=  and it increases as the multiplication factor 

increases. Also, cumulative CPU time for Jackson’s method is between optE E=  and 

2 * optE E=  in the frequency range of interest. Thus, Jackson’s method is best suited in 

terms of CPU time and accuracy of results. 
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TABLE 3.1 
STRUCTURE PARAMETERS 

Parameter* Structure A   

Cavity width, 2a  22.86 

Cavity height, 2b  10.16 

Cavity depth, c  41.275 

Slot length, 2L  15.0 

Slot width, 2w  0.5 

Probe length, h  6.35 

Probe radius, r  0.254 

Probe position, d  17.4625 

* All parameters are in millimeters. 

 

 
TABLE 3.2

RESONANT FREQUENCIES** 

 Structure A 

TE101   7.50  

TE102   9.79 

TE103  12.72 

TE201  13.61 

TE104  15.94 

Probe half-wave resonance 11.81 

Slot half-wave resonance 10.00 

** All frequencies are in GHz. 
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Fig. 3-1. A narrow slot in an infinite PEC screen backed by a rectangular cavity 
with a thin-wire probe in it – (a) perspective view. (b) side view. 

Structure Parameters 
2L  =15.0 mm 
2w  = 0.5 mm 
h  = 6.35 mm 
c  = 41.275 mm 
d  = 17.4625 mm 
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Fig. 3-2 - Input impedance at the base of the probe for Structure A (a) Real part of 
impedance. (b) Imaginary part of impedance. 
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Fig. 3-3. Variation of / optE E  with frequency for structure A.                                      
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Fig. 3-4. Cumulative CPU time vs. frequency in computing input impedance at the 
base of the probe for structure A. 
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4. CONCLUSIONS 

In this chapter a discussion of the Ewald method [1, 2] which is used to efficiently 

accelerate the convergence of the infinite series encountered in the calculation of matrix 

elements obtained by employing the method of moments for the numerical solution of the 

integral equations is discussed. Also, Jackson’s method of determining the splitting 

parameter in the Ewald method has been discussed and results showing the accuracy and 

efficiency of this approach compared to an arbitrary method of choosing E  have been 

detailed. Expressions for choosing the correct E  parameter are arrived at after going 

through formulations from Jackson’s method. The results obtained by using Jackson’s 

method are compared to the measured results [3] and accuracy is established. 
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CHAPTER 4 

EFFICIENT MODELING USING MATRIX 

INTERPOLATION METHODS 

 

The free-space periodic Green’s function appears as the kernel of the integral 

equations formulated for slot-coupled cascaded rectangular cavities. One usually 

encounters extremely slowly convergent series in the calculation of the matrix elements 

occurring in the method of moments (MoM) numerical solution of these integral 

equations. One is thus left with a computationally heavy task of computing the matrix 

elements.  One approach that is useful for this task is to employ matrix interpolation 

techniques (MITs) to compute the elements of the system matrix to reduce the overall 

computation time. In this chapter a discussion of the MIT and, in particular, the ratio of 

polynomials (ROPs) method [1] is provided and numerical results are given to establish 

the accuracy and efficiency of this approach compared to direct computations.  

1. INTRODUCTION 

An investigation of an efficient method for the computation of the broadband 

performance of slot-coupled cascaded rectangular cavities using frequency interpolation 

[1, 3] of the MoM matrix is presented. In the evaluation of cascaded cavities for 

obtaining wideband data, the MoM numerical solution can take a very, very long time 

since the system matrix has to be computed separately for each new frequency. With an 
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interpolation method, the elements of only a few matrices at relatively large frequency 

intervals are directly computed. These matrices are then used to interpolate the elements 

of the system matrix at many intermediate frequencies. Interpolation reduces the time [1, 

3] required to compute the cavity performance over a wide frequency band.  

Two methods that are commonly used for electromagnetic analysis are the finite-

difference time-domain (FDTD) method [4, 5] and the method of moments (MoM) [6, 7, 

8]. FDTD predicts performance over a wide band of frequencies in one simulation. The 

frequency-domain MoM approach computes the system matrix one frequency at a time 

and requires the computation of many frequency points for broadband performance 

evaluation. This can take a long time in situations where each matrix element requires a 

large amount of CPU time since the system matrix will have to be recomputed for each 

new frequency point. Popular methods of reducing the computation time and significantly 

speeding up the overall simulation process rely on the use of numerical and geometrical 

approximations to quickly fill the system matrix or efficient matrix inversion and solution 

algorithms [7, 8]. 

The [ ]Z  interpolation method was originally proposed by Newman and Forrai [9] 

for the scattering analysis of a microstrip patch. Newman [3] also used it for the 

impedance analysis of a straight dipole antenna and flat square plate. In [1, 2] Virga and 

Rahmat-Samii discuss [ ]Z  and [ ]Y  interpolation methods that involve simple 

interpolation functions which require only a few coefficients and which can be applied to 

a wide variety of geometrical configurations. The technique is also independent of 

excitation and imposes few restrictions on geometry. Their work expanded the utilization 

of [ ]Z  interpolation to the wideband performance evaluation of complex antennas and 
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also investigates a comparable [ ]Y  interpolation approach. The methods are applied in 

the context of a triangular surface patch MoM formulation [2]. In [1], the [ ]Z  and [ ]Y  

interpolation techniques are compared and the accuracy and computational efficiency of 

the two methods are discussed along with the implementation guidelines. 

 Generally, the elements of [ ]Z  and [ ]Y  calculated in free-space vary slowly with 

frequency while the elements calculated in the presence of the rectangular cavity 

fluctuate rapidly with frequency. The elements of [ ]Z  and [ ]Y  calculated in the presence 

of the rectangular cavity strongly depend upon the overall behavior of the entire structure. 

The elements of [ ]Z  and [ ]Y  in free-space can be evaluated over a frequency range by 

simple and low-order interpolation functions, such as a quadratic polynomial. In contrast, 

the interpolation of elements in the presence of the rectangular cavity over a frequency 

range requires interpolation functions such as the ratio of two nth order polynomials to 

accurately capture the frequency behavior. The interpolation method used to compute the 

system matrix discussed in Chapter 2 of this report is outlined in the next section. 

2. METHODOLOGY –  RATIO OF POLYNOMIALS INTERPOLATION 

The ROPs interpolation method utilized here focuses on matrix interpolation 

methods that: 

• are easily implemented in an existing method-of-moments computer code, 

thus requiring no significant code modifications; 

• accurately constructs the surface current, impedance, etc.; 

• utilizes simple interpolation functions that require only a few coefficients; 

• apply to a wide variety of configurations;  
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• impose few restrictions on the geometry modeling; 

• are independent of excitation. 

Each element of the matrix is approximated by the ratio of two polynomials [1] given as  
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   (4.1) 

where f  denotes the frequency, p  denotes the order of the numerator polynomial, d  

denotes the order of the denominator polynomial, and ,mn ia  and ,mn ib  are the thmn  

elements of the complex coefficient matrices [ ]ia  and [ ]ib , respectively. When the 

numerator and the denominator have the same or nearly the same degree, the ratio of 

polynomials representation of matrix element mnC  is often better than a polynomial 

approximation [10]. In this approach 1p d+ +  coefficient matrices are computed. 

The mnC  matrix interpolation begins by defining the order of the polynomials in 

(4.1). Next, 1p d+ +  frequencies within the frequency range of interest are chosen. A 

 x N N  matrix is computed at each selected frequency f . The elements of these matrices 

are then used to determine the 1p d+ +  complex coefficient matrices as shown in (4.4). 

The thmn  element of each coefficient matrix is then substituted into (4.1) to compute the 

corresponding elements of the mnC  matrix at each intermediate frequency. 

The mnC  matrix elements are highly dependent upon the resonant characteristics 

of the structure. The choices of the polynomial orders in the numerator and denominator 

depend upon the proximity of adjacent structure resonances and the overall evaluation 

frequency range. Since one typically does not know the location of the resonances 
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beforehand, there is no convenient way to quickly determine the order of the numerator 

and denominator polynomials. In this work, the same order for the numerator and the 

denominator polynomials is used. Equation (4.1) can be rewritten as 

   
2

,1 ,2 ,

2
,0 ,1 ,2 ,

( ) ( ) ( ) ... ( )

... .

d
mn mn mn mn mn mn mn d

p
mn mn mn mn p

C f C f b f C f b f C f b f

a a f a f a f

+ + + +

= + + + +
   

(4.2) 

The unknowns, , ,  0,  ...,  mn ia i p= , and , ,  1,  ...,  mn ib i d= , are then calculated as a solution 

of the matrix equation where f  is the selected frequency within the band that is chosen 

for direct evaluation. The matrix equation is of the form 

   [ ][ ] [ ]A x B=    (4.3)
 

where [ ]x  is the unknown column matrix. The complete equation is shown in (4.4). 

1 1 1 1

2 2 1 1

2 3 4 2 3 4
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   (4.4)
 

The flow chart in Fig. 4-1 shows the polynomial interpolation method as applied 

to a narrow slot in an infinite PEC screen backed by a rectangular cavity with a thin-wire 

probe in it. The slot and the probe terms in the presence of the rectangular cavity are 
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computed by the direct MoM as their resonance behavior is not captured with a 10th- 

order polynomial interpolation method (see Fig. 4-2) and it is advantageous to use the 

direct computation instead. The slot and the probe terms in the presence of the 

rectangular cavity vary rapidly with frequency and hence it is difficult to approximate 

these terms with the 10th order interpolation method. The coupling terms and the slot self-

terms are, however, computed by the use of the ROPs technique. Eventually all the 

matrix elements are assembled together for impedance calculations.  

 

 

 

Fig. 4-1. Matrix interpolation methodology – ROPs technique as applied to a narrow 
slot in an infinite PEC screen backed by a rectangular cavity 
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Fig. 4-2. (a) Slot term ( 1,1
cvY ) in a rectangular cavity for the structure shown in Fig. 4-4. 

(b) Probe term ( 1,1Z ) in a rectangular cavity for the structure shown in Fig. 4-
4. (Single matrix element computed by direct MoM and ROPs interpolation) 
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3. RESULTS 

To investigate the accuracy of the matrix interpolation technique, the antenna 

input impedance is illustrated in Fig. 4-3 for a dipole antenna of length 0.5 mL =  over 

a range from 200 to 1400 MHz, with 1st -order, 2nd -order and 4th -order polynomial 

interpolations. The antenna is subdivided into 20 equal segments in length of about 

0.12λ  at 1400 MHz where 19N =  basis functions are used. The results show close 

agreement between the direct MoM and 2nd and 4th-order interpolations. The 4th-order 

interpolation curve in Fig. 4-3 provides very accurate data in the sense that the error in 

interpolating [ ]mnZ  is negligible. However, some error is observable in the 2nd and 1st-

order cases. The deviation from the direct MoM results around 640 MHz and 1120 MHz 

is a good measure of the interpolation error. The 4th-order interpolation data also shows 

some deviations, but they are much smaller.  

One may use the polynomial interpolation technique for the analysis of probes 

and slots in rectangular cavities, the results of which are discussed in detail here. As 

shown in Fig. 4-4, the structure under examination is a narrow slot in an infinite PEC 

screen backed by a rectangular cavity with a thin-wire probe present inside the cavity. 

The length of the thin-wire probe is h  and its radius is r . The probe axis is located in the 

yz  plane with d  representing its displacement from the 0z =  plane. The slot length is 

2L  and its width is 2w . The width, height, and depth of the cavity shown in the figure 

are 2 ,  2  and a b c , respectively. The medium inside the cavity and in the left half-space is 

characterized by ( , )µ ε . The probe is connected via a 50Ω  coaxial cable to a signal 

source having an internal impedance of 50Ω .  
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Fig. 4-5(a) and Fig. 4-5(b) show that the slot self-coupling elements can be 

interpolated to an accurate approximation through the ratio of polynomials interpolation 

method. One may use the 10th-order ROPs approximation to compute the slot self-

coupling terms 1,1
sY  and 2,3Ys . The agreement between the direct MoM and the 

interpolated results is excellent throughout the frequency range of 6 GHz  to 12 GHz . 

Fig. 4-6 and Fig. 4-7 show the probe-to-slot coupling elements 1,4 2,6 and sp spC C , 

which are similar to ,  i is p
m nC  defined in (2.47). One again sees good agreement between the 

direct MoM and the 10th-order polynomial interpolated results. To understand and 

explain these results, the ROPs representation was used to investigate how accurately it 

can compute a single matrix element. The coefficients for the 10th-order ROPs 

approximation were computed by evaluating matrix elements at 21 frequencies. Fig. 4-6 

shows that 6th-order ROPs capture the behavior of the 1,4
spC  term really well at the lower 

end of the frequency spectrum but does not at the higher frequencies. Fig. 4-8 shows the 

slot-to-probe coupling term 4,1
psC , which is similar to ,

i ip s
m nC  defined in (2.52), calculated by 

direct MoM and interpolation techniques. Again the agreement is excellent throughout 

the frequency range. 

 The real and imaginary parts of the input impedance of the thin-wire probe in the 

frequency range between 6 GHz  and 12 GHz  are shown in Fig. 4-9 for structure A of 

Table 4.1. Numerical results are obtained by using the direct MoM and 10th-order ROPs 

interpolation. Examining the figure, the 101TE  mode is seen to be excited near 7.3 GHz  

in both methods, which is very close to the resonant frequency of this mode (7.5 GHz ). 

The 102TE  mode is the second mode excited for this structure with its excitation 



 54

occurring near 10.3 GHz . Since the probe is located at /2d c≅ , the change seen in the 

input impedance because of the excitation of this mode is not as drastic as the excitation 

of the 101TE  mode.  The direct MoM results and interpolated results show complete 

agreement throughout the frequency range. 

 Fig. 4-10 shows the real and imaginary parts of the input impedance of the thin-

wire probe for structure B of Table 4.1 in the frequency range between 6 GHz  and 

12 GHz . Data from direct MoM is compared with the numerical results obtained by 

using 10th-order ROPs. The agreement between the two methods is very good over the 

entire frequency range. Examining the figure, the 101TE  mode is excited at about 

7.27 GHz  in both the methods and since the wire is located at /2d c≅ , the 102TE  mode 

is excited slightly. 

 Fig. 4-11 shows the cumulative computation time for direct MoM and that for the 

interpolation. The bulk time in the interpolated method is utilized in the calculation of the 

21 selected frequencies and the interpolation procedure, in comparison, is a fast process. 

Examining the figure, approximately 21000  seconds were required for the computation 

of matrix elements at the 21 selected frequencies and the frequency sweep over the range 

from 6 GHz  to 12 GHz  was a much faster process. In contrast, the calculation of matrix 

elements in the direct method is a computationally very heavy task. The time advantage 

in the ROPs method is apparent from the figure.  

The [Y] matrix interpolation and coupling matrix interpolation methodologies 

have been used with the method of moments in order to significantly reduce the 

computation time required for the wideband performance evaluation of slot-coupled 

cascaded rectangular cavities. These interpolation methods do not require a prior 
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knowledge of cavity resonance characteristics. The results included a comparison of the 

time savings of the interpolation method over the direct MoM approach. Sometimes 

large-order polynomials are required to accurately reproduce the elements via matrix 

interpolation and still they have a good time advantage over the direct method. Higher-

order polynomials for matrix interpolation require the storage of more coefficients than 

the lower-order matrix interpolation techniques and require more computation time. The 

advantage of a particular interpolation method such as ROPs technique to simple 

interpolation techniques such as the quadratic interpolation is based upon the general 

resonant nature of the cavity to be modeled. When many resonances occur within a 

particular frequency range, ROPs matrix interpolation is faster and requires less 

computational resources than the direct method. The results presented in this chapter 

demonstrate the applicability of the ROPs matrix interpolation methods. 
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       (a) 
 

     (b) 
Fig. 4-3. Dipole antenna input impedance using polynomial interpolation technique.  

(a) real part of impedance. (b) imaginary part of impedance.  

Antenna Parameters 
Length of dipole = 0.5 m 
Radius of dipole = 0.0025 m 
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TABLE 4.1 

STRUCTURE   PARAMETERS 
 

Parameter* Structure A Structure B 

Cavity width, 2a  22.86 22.86 

Cavity height, 2b  10.16 10.16 

Cavity depth, c  47.625 41.275 

Slot length, 2L  12.5 15.0 

Slot width, 2w  0.5 0.5 

Probe length, h  7.62 6.35 

Probe radius, r  0.254 0.254 

Probe position, d  25.4 17.4625 
*All parameters are in millimeters 
 
 

TABLE 4.2 
RESONANT FREQUENCIES**

 Structure A Structure B 

TE101   7.27   7.50  

TE102  9.09  9.79 

TE103  11.50 12.72 

TE201  13.49 13.61 

TE104  14.20 15.94 

Probe half-wave resonance 9.84 11.81 

Slot half-wave resonance 12.00 10.00 

*All frequencies are in GHz. 
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Fig. 4-4. A narrow slot in an infinite PEC screen backed by a rectangular cavity with a 

thin-wire probe in it – (a) perspective view. (b) side view. 
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(a) (b) 
Fig. 4-5. Slot self-coupling elements- 1,1 2,3,  s sY Y  - (a) real part  (b) imaginary part 

 

 
 

 

 

 

 

Fig. 4-6. Coupling element from probe to slot - 1,4
spC  (single matrix element computed 

by direct MoM and ROPs interpolation) 
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Structure A Parameters 
2L =12.5 mm 
2w = 0.5 mm 
h = 7.62 mm 
c = 47.275 mm 
d = 25.4 mm 
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Fig. 4-7 Coupling element from probe to slot - 2,6
spC  (single matrix element computed 

by direct MoM and ROPs interpolation) 
 

 

Fig. 4-8 Coupling element from slot to probe - 4,1
psC  (single matrix element computed 

by direct MoM and ROPs interpolation) 
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         (b) 

Fig. 4-9. Input impedance of the thin-wire probe inside a slotted cavity. (a) real part of 
input impedance. (b) imaginary part of input impedance. (30 frequency points 
computed for direct MoM) 

Structure A Parameters 
2L =12.5 mm 
2w = 0.5 mm 
h = 7.62 mm 
c = 47.625 mm 
d = 25.4 mm 
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         (b) 

Fig. 4-10. Input impedance of the thin-wire probe inside a slotted cavity. (a) real part of 
input impedance. (b) imaginary part of input impedance. (30 frequency points 
computed for direct MoM) 

Structure B Parameters 
2L =15.0 mm 
2w = 0.5 mm 
h = 6.35 mm 
c = 41.275 mm 
d = 17.4625 mm 
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Fig. 4-11. Cumulative CPU time for direct method (MoM) and polynomial 
interpolation method for structure A. (60 frequency points computed for 
direct MoM and ROPs interpolation) 
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4. CONCLUSIONS 

In this study an investigation of an efficient method for the computation of the 

broadband characteristics of slot-coupled cascaded rectangular cavities using frequency 

interpolation of MoM matrix is presented. The ROPs method of MoM matrix 

interpolation significantly reduced the computation time required for the wideband 

performance evaluation of cavity responses. Good agreement showing the efficiency and 

the accuracy of the ROPs method is observed in the results obtained by the ROPs matrix 

interpolation method and the results obtained by the direct MoM. Data included the CPU 

time comparison between the two methods.  

 

APPENDIX: USE OF XEON MULTI-PROCESSORS TO REDUCE CPU TIME 

The numerical solution of the cavity problem involves computation of very 

slowly convergent infinite series in the calculation of the matrix elements occurring in the 

method of moments (MoM) solution of integral equations, hence the enormous time 

required to compute the matrix elements. This led to the farming of codes on Xeon multi-

processors, wherein the original FORTRAN code is fed into different Xeon processors 

simultaneously through the use of PBS (portable batch system) scripts. The main script 

controls the feeding of the sub-codes through the queue command and also assembles the 

results at the end of the runs. The full process is illustrated in the flow chart in Fig. 4-12. 

The computationally heavy segment of the FORTRAN code involves the calculation of 

matrix elements. The main script submits the ‘ n ’ subordinate scripts one after the other 

into the queue and the subordinate scripts are submitted to the different nodes for separate 

calculations. The main script also assembles all the resultant elements into a complete 
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matrix file. An important criterion is the synchronization of all ‘ n ’ sub-scripts such that 

the next stage of computation starts after all ‘ n ’ codes exit successfully. The entire ( , )n n  

matrix file is depicted in Fig. 4-13 along with the method of splitting them into 21 

( 21n = ) different segments to be fed into various nodes. The 1 1 and cY Y  terms in the 

figure are the admittance terms due to slot 1, and, 2 2and  cY Y  are the admittance terms 

due to slot 2. The elements of the sub-matrices representing the coupling from the probe 

to slot 1 are given by 1s pC  and the coupling from probe to slot 2 is given by 2s pC . 1psC  

represents the slot 1 to probe coupling term and 2psC  represents the slot 2 to probe 

coupling term. Z  is the impedance sub-matrix term for the probe.  

The CPU time results, Fig. 4-14, for the performance of parallel codes in Xeon 

multi-processors are compared with a run in an Alpha system of dual processors (serial) 

for structure A parameters. The results show a massive improvement in cumulative CPU 

time when run on Xeons due to the farming across multiprocessors, an improvement of 

nearly 94% from the serial case for a wideband evaluation between 6 GHz  and 12 GHz . 
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Fig. 4-12. Farming of FORTRAN program across Xeon multi-processors 
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                                                                                                Structure Geometry 

 

 

Fig. 4-13. Matrix fill mechanism for a single rectangular cavity with two slots and one 
probe. 
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Fig. 4-14. Comparison of cumulative CPU time for Alphas and Xeon processors 
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CHAPTER 5 

NUMERICAL ANALYSIS OF SLOT-COUPLED CASCADED 

RECTANGULAR CAVITIES 

 

Numerical results for signal propagation through cascaded rectangular cavities are 

presented in this chapter. The cascaded rectangular cavities are interconnected by narrow 

slots and have thin-wire probes/posts present in them. The input impedance at the center 

of the slot, input impedance at the base of the thin-wire probe and the electric field 

shielding (EFS) effectiveness [6] inside the rectangular cavity are calculated for single, 

double, and triply cascaded rectangular cavities.  

1. INTRODUCTION 

A numerical analysis of thin-wire probes inside slotted cascaded rectangular 

cavities is undertaken. The method of analysis is based on solving the coupled integral 

equations developed for the electric current on the probes and the equivalent magnetic 

current in the slots (see Chapter 2). The structure considered for investigation is a narrow 

slot in an infinite PEC screen backed by cascaded rectangular cavities that contain thin-

wire probes/posts in them and which are interconnected by narrow slots. The analysis of 

this structure requires coupled integral equations which include the free-space periodic 

Green’s function as part of their kernels. The coupled integral equations are solved by the 

method of moments [2].  
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The EFS [6] is calculated at the center of each rectangular cavity to evaluate the 

effect of the transmission path/environment on the entering transient signal and is defined 

as 

 
( , , )

 ( ) 20log
( , , )

y
inc
y

E x y z
EFS dB

E x y z
= −  ,  (5.1) 

where yE  is the amplitude of the electric field at a specified point in the presence of the 

enclosure and inc
yE  is the  amplitude of the electric field at the same point with the 

enclosures removed. The field inc
yE  is given by 

 0
inc jkz
yE V e−=  ,  (5.2) 

where 0V  is the input voltage at the center of the slot and yE   is obtained from  
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(5.3)
 

where ( )m x  is the axial variation of the magnetic current on the slot and ( )I y  is the 

electric current on the thin-wire probe. The term ( , )K y y′  is similar to ( , )j

j

p
cvK y y′  in 

(2.35) and ( , , )s
dG y x y′ ′  is similar to ( , , )js

dG y x y′ ′  in (2.25). Equation (5.3) is applicable 

for a rectangular cavity with a single slot and probe. If the rectangular cavity has two 

slots, then 
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where 1( )m x  and 2 ( )m x  are the axial variations of the magnetic currents on slot 1 and 

slot 2 and ( , )P
cvK y y′ , 1( , , )s

dG y x y′ ′  and 2 ( , , )s
dG y x y′ ′  are similar to terms defined in 

(2.19).

 
 The expression for the electric field on the non-illuminated side (Fig. 5-1) of the 

final cavity screen is given below. The magnetic current in the last slot is determined by 

the use of the MoM solution procedure and one can compute the electric field, yE , 

behind the final cavity screen from 

 32 2
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where ‘ n ’ is the index of the slot current on the end wall. By expanding ( )nm x  in pulse 

basis functions, one can write yE  as 
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Fig. 5-1. Two cascaded rectangular cavities showing the non-illuminated point behind 
the last cavity screen. 

 

As an investigation of the method devised to calculate EFS of a shielded enclosure, the 

shielding effectiveness of a single rectangular cavity with a narrow slot excited by a 

plane-wave source was computed and EFS plotted at the center of the cavity for a 

frequency range of 100 to 1000 MHz . The EFS plot was checked against results in [4] 

and [6] and found to agree well. A circuital approach to predict the field distributions on 

rectangular apertures backed by rectangular cavities is discussed by Azaro in [4] and the 

multilevel fast multipole method (MLFMM) algorithm is used for the computation of the 

EFS parameters by Volakis in [6]. 
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Fig. 5-2. Shielding effectiveness at the center of the rectangular cavity. Enclosure 
dimensions: 30 x 12 x 30 (cm). (a) Aperture dimensions: 20 x 3.0 (cm)         
(b) Aperture dimensions: 10 x 0.5 (cm) 
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The excitation used to illuminate the slot is shown in Fig. 5-3(a). It is a differentiated 

Gaussian pulse and its Fourier transform is shown in Fig. 5-3(b). The energy is centered 

around 1 GHz and only the positive frequencies are shown in the figure.  
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Fig. 5-3.    (a) Differentiated Gaussian pulse excitation: 
2

0( )exp( )on nn n
τ
− − −     with 

67.45 secsτ =  and 3on τ= .  (b) FFT spectrum (magnitude) of the 
differentiated Gaussian pulse with its energy centered around 1 GHz. 
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2. SINGLE RECTANGULAR CAVITY WITH A THIN-WIRE PROBE                                       

AND A NARROW SLOT 

As shown in Fig. 5-4(a), the structure under examination is a narrow slot in an 

infinite PEC screen backed by a rectangular cavity with a thin-wire probe/post in it.  The 

side view of the structure is illustrated in Fig. 5-4(b). As seen from the figure, it is a 

single rectangular cavity where the length of the thin-wire probe is h  with its radius 

specified as r . The probe axis is located in the yz  plane with d  representing its 

displacement from the 0z =  plane. The slot length is 2L  and the width is 2w . The 

width, height, and depth of the cavity shown in the figure is 2a , 2b  and c , respectively. 

The medium inside and in the left half-space is characterized by ( , )µ ε .  

 The numerical results in the following pages show the input impedance of the slot 

and the probe for different structures. The input impedance is calculated from the 

magnetic currents and the electric currents which are obtained by solving the matrix 

equation as given in (2.37). The orientation of the thin-wire probe in the cavity and the 

orientation of the slot in the cavity do not allow the 20 pTE  and 01pTE  modes to be excited 

in the cavity. One can find the modes excited by calculating the resonant frequency or the 

wavelength of each mode and examining the currents [5]. One finds that the 101TE  mode 

is the lowest-order mode excited for each structure. 

 The real and imaginary parts of the input impedance at the center of the slot for 

Structure A are shown in Fig. 5-5. The upper limit of the frequency spectrum is 5 GHz . 

In the figure, one can see that the lowest-order 101TE  mode is excited at about 3.78 GHz  

which is very close to the resonant frequency of this mode (3.40 GHz ), as shown in 

Table 5.2. The resonance associated with the thin-wire probe is seen at about 2.58 GHz , 
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which is close to the resonance associated with the quarter-wave monopole (3.125 GHz ), 

with a zero crossing in the imaginary part of the input impedance. The narrow-slot 

resonance is seen at about 4.19 GHz  which is very close to the calculated resonance of  

4.28 GHz . 

 Fig. 5-6 shows the real and imaginary parts of the input impedance computed at 

the center of the slot for Structure B with an upper frequency limit of 5 GHz . Examining 

the figure reveals that the lowest-order 101TE  mode is excited at about 3.27 GHz  which is 

very close to the resonant frequency of this mode (3.40 GHz ) as shown in Table 5.2. The 

figure also shows that the resonance associated with the narrow slot is seen at about 

4.37 GHz  which is close to the calculated resonance of 4.28 GHz . 

 Table 5.3 shows parameters for Structure C for which the input impedance at the 

center of the slot and at the base of the thin-wire probe is computed by driving them 

separately. The slot is excited with the frequency spectrum obtained from the FFT of a 

differentiated Gaussian pulse as described in Fig. 5-3(b) and the probe is fed with a 1.0 V 

source at its base. The EFS for the structure is computed at the center of the cavity using 

(5.1). In the Fig. 5-7, one can see that the lowest-order mode, 101TE , is excited at about 

3.41 GHz , which is very close to the resonant frequency of this mode (3.40 GHz ), as 

shown in Table 5.4. The resonance associated with the thin-wire probe is seen at about 

2.44 GHz , which is close to the resonance associated with the quarter-wave monopole 

( 2.67 GHz ), with a zero crossing in the imaginary part of the input impedance. The 

narrow-slot resonance is seen at about 4.29 GHz  which is extremely close to the 

calculated resonance of 4.28 GHz . The input impedance at the base of the probe is 

shown in Fig. 5-8. The resonances associated with the cavity, slot and the probe are very 
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clearly defined at the same frequencies as seen for the slot impedance. The EFS is 

computed at the center of the cavity using (5.1). The plot (Fig. 5-9) shows that EFS 

decreases in the neighborhood of the resonances as expected. 

Fig. 5-10 shows the real and imaginary parts of the input impedance computed at 

the center of the slot for Structure D with an upper frequency limit of 5 GHz . The same 

driving mechanism is used as described in the previous section. As the figure shows, the 

lowest-order mode, 101TE , is excited at about 4.22 GHz  which is close to the resonant 

frequency of this mode (3.86 GHz ), as shown in Table 5.4. The figure also shows that 

the resonance associated with the narrow slot is seen at about 3.01 GHz  which is 

extremely close to the calculated resonance of 3.0 GHz . The resonance associated with 

the thin-wire probe is seen at about 1.84 GHz , which is close to the resonance associated 

with the quarter-wave monopole ( 2.08 GHz ). The EFS plot (Fig. 5-11) shows that the 

shielding effectiveness decreases near 1.84 GHz , 3.11 GHz , and 4.24 GHz  which 

corresponds to the three resonances captured in the impedance plots. 
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TABLE 5.1 

STRUCTURE   PARAMETERS 
 

Parameter* Structure A Structure B 

Cavity width, 2a  60.0 60.0 

Cavity height, 2b  34.0 32.0 

Cavity depth, c  65.0 65.0 

Slot length, 2L  35.0 35.0 

Slot width, 2w  0.5 0.5 

Probe length, h  24.0 12.0 

Probe radius, r  0.25 0.25 

Probe position, d  20.0 20.0 

*All parameters are in millimeters 
 
 

TABLE 5.2 
RESONANT FREQUENCIES** 

 Structure A Structure B 

TE101   3.40   3.40  

TE102   5.25  5.25 

TE103  7.36 7.36 

TE201  5.5 5.5 

TE104  9.56 9.56 

Probe half-wave resonance 3.125 6.25 

Slot half-wave resonance 4.28 4.28 

*All frequencies are in GHz. 
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Fig. 5-4. A narrow slot in an infinite PEC screen backed by a rectangular cavity with a 
thin-wire probe in it. (a) perspective view  (b) side view 
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Fig. 5-5. Input impedance at the center of the slot. (a) Real part of impedance.          

(b) Imaginary part of impedance.  

z

y

b

-b

c

Slot

PEC

d

h ( , )µ ε( , )µ ε

( , )i iH E

Structure A Parameters 
2L =35.0 mm 
2w = 0.5 mm 
h = 24.0 mm 
c = 65.0 mm 
d = 20.0 mm 



 81

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency ( GHz )
(a)

0

100

200

300

400

500

600

700

800

900

1000

R
e 

(Z
in

) (
Ω
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency ( GHz )
(b)

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

Im
 (Z

in
) (
Ω
)

 
 
 
 
 
 

 

 
 
Fig. 5-6. Input impedance at the center of the slot. (a) Real part of impedance.          

(b) Imaginary part of impedance.  
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TABLE 5.3 

STRUCTURE   PARAMETERS 

Parameter Structure C (mm) Structure D (mm) 

Cavity width, 2a  60.0 53.0 

Cavity height, 2b  34.0 40.0 

Cavity depth, c  65.0 58.0 

Slot length, 2L  35.0 50.0 

Slot width, 2w  0.5 0.5 

Probe length, h  28.0 36.0 

Probe radius, r  0.25 0.25 

Probe position, d  4.0 20.0 

 
 

TABLE 5.4 
RESONANT FREQUENCIES** 

 Structure C Structure D 

TE101   3.40   3.86  

TE102   5.25  5.87 

TE103  7.36 7.36 

TE201  5.5 5.5 

TE104  9.56 9.56 

Probe half-wave resonance 2.67 2.08 

Slot half-wave resonance 4.28 3.00 

** All Frequencies are in GHz 
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Fig. 5-7. Input impedance at the center of the slot. (a) Real part of impedance.          

(b) Imaginary part of impedance.  
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Fig. 5-8. Input impedance at the base of the probe. (a) Real part of impedance (b) 

Imaginary part of impedance.  
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Fig. 5-9. EFS at the center of the rectangular cavity for Structure C. 
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Fig. 5-10. Input impedance at the center of the slot. (a) Real part of impedance              

(b) Imaginary part of impedance.  
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Fig. 5-11. EFS at the center of the rectangular cavity for Structure D. 
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3. TWO CASCADED RECTANGULAR CAVITIES INTERCONNECTED                                       

BY A NARROW SLOT WITH THIN-WIRE PROBES INSIDE 

As shown in Fig. 5-12, the structure under examination is a narrow slot in an 

infinite PEC screen backed by two cascaded rectangular cavities each having a thin-wire 

probe/post inside and which are interconnected by a narrow slot. The lengths of the thin-

wire probes are 1 2 and h h  with their radii specified as r . The probe axes are located in 

the yz  plane with 1 2  and  d c d+  representing their displacement from the 0z =  plane. 

The slot lengths are 12L , 22L  and 32L  respectively and their widths are 2w  for all the 

slots. The width, height, and depth of each cavity shown in the figure is 2a , 2b  and c . 

The medium inside each cavity, in the left half-space where 0z <  and in the right-half 

space where 2z c>  is characterized by ( , )µ ε .  

The numerical procedure was first tested by computing the electric and magnetic 

currents on the probes and the slots for a symmetrical structure which is excited at the 

second (middle) slot. The currents are shown in Fig. 5-13. The magnetic current on slot 1 

and slot 3 and the electric current on probe 1 and probe 2 are plotted. From the figure it is 

seen that the agreement between the slot currents and the probe currents is very good at 

the given frequency, which is to be expected. Though this method is not a foolproof 

validation of the numerical process, it serves as a partial validation of the numerical 

results. 

Table 5.4 shows parameters for Structure E for which input impedance at the 

center of slot 1 and at the base of probe 1 in the first cavity is computed by driving them 

separately. The frequency spectrum obtained from the FFT of a differentiated Gaussian 

pulse as defined in Fig. 5-3(b) is used to excite the narrow slot and the probe is fed with a 
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1.0 V source at its base. The EFS for the structure is computed at the center of each 

cavity using (5.1). In the Fig. 5-14, one can see that the lowest-order mode, 101TE , is 

excited at about 3.38 GHz  which is extremely close to the resonant frequency of this 

mode (3.40 GHz ), as shown in Table 5.4. The resonance associated with the thin-wire 

probe is seen at about 2.43 GHz , which is close to the resonance associated with the 

quarter-wave monopole ( 2.67 GHz ), where a zero crossing in the imaginary part of the 

input impedance is seen. The narrow-slot resonance is seen at about 4.26 GHz , which is 

extremely close to the calculated resonance of 4.28 GHz . The resonance of the second 

slot (slot 2) is seen at 4.41 GHz  and the resonance of the third slot (slot 3), though not 

properly excited, exists at around 4.58 GHz . The input impedance at the base of the 

probe is shown in Fig. 5-15. The resonances associated with the cavity, slot, and the 

probe are very clearly defined at the same frequencies as seen for the slot impedance. The 

EFS is computed at the center of each cavity ( / 2z c= , 3 / 2z c=  and 5 / 2z c= ) using 

(5.1). Equation (5.6) is used to compute yE  at 5 / 2z c= . The plot shows that EFS (Fig. 

5-16) decreases in the neighborhood of the resonances, as expected.  

Fig. 5-17 shows the real and imaginary parts of the input impedance computed at 

the center of the slot for Structure F with an upper frequency limit of 5 GHz . Examining 

the figure reveals that the lowest-order mode, 101TE , is excited at about 4.22 GHz  which 

is close to the resonant frequency of this mode (3.86 GHz ), as shown in Table 5.4. The 

resonance of the second cavity is seen to be excited slightly at about 4.35 GHz . The 

figure also shows that the resonance associated with the narrow slot is seen at 3.01 GHz , 

which is extremely close to the calculated resonance of 3.0 GHz . The resonance of slot 2 

is seen at 3.11 GHz . The resonance of slot 3 is not properly excited and hence is not seen 
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in the figure. The resonance associated with the thin-wire probe is seen at about 

1.84 GHz , which is close to the resonance associated with the quarter-wave monopole 

( 2.08 GHz ). The EFS plot in Fig. 5-18 shows that the shielding effectiveness decreases 

near 1.84 GHz , 3.11 GHz , and 4.22 GHz , which corresponds to the three resonances 

captured in the impedance plots. 
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TABLE 5.3 
STRUCTURE   PARAMETERS 

Parameter Structure E (mm) Structure F (mm) 

Cavity width, 2a  60.0 53.0 

Cavity height, 2b  34.0 40.0 

Cavity depth, c  65.0 58.0 

Slot length, 1 2 32 ,  2 ,  2L L L  35.0 50.0 

Slot width, 2w  0.5 0.5 

Probe length, 1 2,  h h  28.0 36.0 

Probe radius, r  0.25 0.25 

Probe position, 1 2,  d d  4.0 20.0 

 
 

TABLE 5.4 
RESONANT FREQUENCIES** 

 Structure E Structure F 

TE101   3.40   3.86  

TE102   5.25  5.87 

TE103  7.36 7.36 

TE201  5.5 5.5 

TE104  9.56 9.56 

Probe half-wave resonance 2.67 2.08 

Slot half-wave resonance 4.28 3.00 

** All Frequencies are in GHz 
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Fig. 5-12. Two cascaded rectangular cavities interconnected by a narrow slot and with 
thin-wire probes in them. (a) perspective view.  (b) side view. 
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Fig. 5-13. Magnetic currents in the slots and electric currents on the probes due to a 1.0 

V excitation on slot 2 (a) Magnetic currents in slot 1 and slot 3 (b) Electric 
currents on probe 1 and probe 2. 
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Fig. 5-14. Input impedance at the center of slot 1. (a) Real part of impedance.             

(b) Imaginary part of impedance. 
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Fig. 5-15. Input impedance at the base of probe 1. (a) Real part of impedance.             

(b) Imaginary part of impedance.  
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Fig. 5-16. EFS for Structure E. 
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Fig. 5-17. Input impedance at the center of slot 1. (a) Real part of impedance.             

(b) Imaginary part of impedance.  
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Fig. 5-18.  EFS for Structure F.  
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4. THREE CASCADED RECTANGULAR CAVITIES INTERCONNECTED                                   

BY NARROW SLOTS WITH THIN-WIRE PROBES INSIDE 

As shown in Fig. 5-19, the structure under examination is a narrow slot in an 

infinite PEC screen backed by triply cascaded rectangular cavities, each with a thin-wire 

probe/post in it and which are interconnected by narrow slots. As seen from the figure, 

the structure is a triply cascaded rectangular cavity where the lengths of the thin-wire 

probes are 1h , 2h and 3h  with their radii specified as r . The probe axes are located in the 

yz  plane with 1d , 2c d+  and 32c d+  representing their displacement from the 0z =  

plane. The slot lengths are 12L , 22L , 32L  and 42L  respectively and their widths are 2w  

for all the slots. The width, height, and depth of each of the cavity shown in the figure is 

2a , 2b  and c , respectively. The medium inside each cavity, in the left half-space and in 

the right-half space, is characterized by ( , )µ ε .  

The numerical procedure was first tested by computing the electric and magnetic 

currents on the probes and the slots for a symmetrical structure which was excited at the 

second (middle) probe. The currents are shown in Fig. 5-20. The equivalent magnetic 

currents in slot 1 and slot 4 are plotted in Fig. 5-20(a) and in slot 2 and slot 3 are plotted 

in Fig. 5-20(b). The electric currents on probe 1 and probe 3 are plotted in Fig. 5-20(c).  

From the figure it is seen that the agreement between the slot currents and the probe 

currents is very good at the given frequency which is to be expected. As stated earlier, 

this method enables us to partially validate the numerical results even if not completely 

endorsing it. 

Table 5.5 shows parameters for Structure G for which input impedance at the 

center of slot 1 and at the base of probe 2 in the second cavity is computed by driving 
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them separately. The slot is excited by the frequency spectrum obtained from the FFT of 

the differentiated Gaussian pulse (Fig. 5-3(b)) and the probe is driven by a 1.0 V source 

applied at its base. The EFS for the structure is computed at the center of each cavity to 

predict the influence of the transmission path on the transient signal. One can see from 

the Fig. 5-21 that the lowest-order mode, 101TE , is excited at about 3.38 GHz  which is 

extremely close to the resonant frequency of this mode (3.40 GHz ), as shown in Table 

5.6. Also, the thin-wire probe resonance is seen at about 2.43 GHz , which is close to the 

theoretically [5] calculated value of 2.67 GHz . Examining the figure, the resonances of 

the different slots are seen near 4.48 GHz, which is the calculated value. The resonance 

of slot 1 is seen at 4.22 GHz , the resonance of slot 2 is seen at 4.37 GHz , the resonance 

associated with slot 3 exists at about 4.48 GHz  and the resonance of slot 4 occurs at 

4.59 GHz . The input impedance at the base of the probe is shown in Fig. 5-22. The 

resonances associated with the cavity, slot and the probe are very clearly defined at the 

same frequencies as seen for the slot impedance. The EFS (Fig. 5-23) is computed at the 

center of each cavity ( / 2z c= , 3 / 2z c= , 5 / 2z c=  and 7 / 2z c= ) using (5.1). The 

equation (5.6) is used to compute yE  at 7 / 2z c= . The plot shows that EFS decreases in 

the neighborhood of the resonances as expected. The EFS decreases near the vicinity of 

2.41 GHz , 3.40 GHz , and 4.31 GHz  corresponding to the calculated resonances. 

The real and imaginary parts of the input impedance at the center of slot 1 and 

base of probe 2 for Structure H in the frequency range between 6 GHz and 12 GHz are 

computed by following the same driving mechanism as explained in the previous section. 

Examining Fig. 5-24, the input impedance at the center of slot 1 is plotted and the 101TE  

mode is excited at around 4.20 GHz , which is close to the resonant frequency of this 
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mode (3.86 GHz ). One can also see a slight change in the input impedance at this 

frequency. It can also be seen from the figure that the resonance associated with the thin-

wire probe occurs at about 1.84 GHz , which is close to the theoretical value of 

2.08 GHz . The resonance associated with slot 1 occurs at about 3.02 GHz  which is 

extremely close to the calculated resonance of 3.0 GHz . The resonance of the second slot 

is seen at 3.07 GHz  while the resonances associated with slot 3 and slot 4 are not 

properly excited in this structure. The input impedance at the base of the probe is shown 

in Fig. 5-25 for a 1.0 V excitation at its base. The resonances associated with the cavity, 

slot, and the probe are very clearly defined at the same frequencies as seen for the slot 

impedance. The EFS (Fig. 5-26) is computed at the center of each cavity ( / 2z c= , 

3 / 2z c= , 5 / 2z c=  and 7 / 2z c= ) using (5.1) for Structure H. Again, equation (5.6) is 

used to compute yE  at 7 / 2z c= . The plot shows that EFS decreases in the neighborhood 

of the resonances, as expected. 
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Fig. 5-19. Three cascaded rectangular cavities interconnected by narrow slots and 
with thin-wire probes in them. (a) perspective view.  (b) side view. 
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TABLE 5.5 
STRUCTURE   PARAMETERS 

Parameter Structure G (mm) Structure H (mm) 

Cavity width, 2a  60.0 53.0 

Cavity height, 2b  34.0 40.0 

Cavity depth, c  65.0 58.0 

Slot lengths,  1 2 3 42 ,  2 ,  2 ,  2L L L L  35.0 50.0 

Slot width, 2w  0.5 0.5 

Probe lengths, 1 2 3,  ,  h h h  28.0 36.0 

Probe radius, r  0.25 0.25 

Probe position, 1 2 3,  ,  d d d  4.0 20.0 

 
 
 

TABLE 5.6 
RESONANT FREQUENCIES** 

 Structure G Structure H 

TE101   3.40   3.86  

TE102   5.25  5.87 

TE103  7.36 7.36 

TE201  5.5 5.5 

TE104  9.56 9.56 

Probe half-wave resonance 2.67 2.08 

Slot half-wave resonance 4.28 3.00 

** All Frequencies are in GHz 
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Fig. 5-20. Magnetic currents in the slots and electric currents on the probes due to a 1.0 

V excitation on probe 2 (a) Magnetic currents in slot 1 and slot 4.  (b) 
Magnetic currents in slot 2 and slot 3. (c) Electric currents on probe 1 and 
probe 3. 
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Fig. 5-21. Input impedance at the center of slot 1. (a) Real part of impedance.             

(b) Imaginary part of impedance.  

Structure G Parameters 

12L  = 22L = 3 42 2 L L= =  35.0 mm 
2w = 0.5 mm 

1h  = 2 3 h h=  = 28.0 mm 
c = 65.0 mm 

1d  = 2 3 d d=  = 4.0 mm 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (GHz)
(a)

0

1000

2000

3000

4000

5000

6000

7000

R
e 

(Z
in

)  
(Ω
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (GHz)
(b)

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

Im
 (Z

in
)  

(Ω
)



 106

z

y

b

-b

c

Probe 1

PEC

1d 2d 3d

1h 2h 3h

≈ ≈

≈

PEC

≈

Slot 1

Probe 2 Probe 3

Slot 2 Slot 3 Slot 4

c c

gV

gZ

 
 

 
 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 

 
 
 

 
 
 

 
Fig. 5-22. Input impedance at the base of probe 2. (a) Real part of impedance.            

(b) Imaginary part of impedance.  
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Fig. 5-23. EFS for Structure G. 
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Fig. 5-24. Input impedance at the center of slot 1. (a) Real part of impedance.              

(b) Imaginary part of impedance.  

Structure H Parameters 

12L  = 22L = 3 42 2 L L= =  50.0 mm 
2w = 0.5 mm 

1h  = 2 3 h h=  = 36.0 mm 
c = 58.0 mm 

1d  = 2 3 d d=  = 20.0 mm 

0 1 2 3 4 5

Frequency (GHz)
(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

R
e 

(Z
in

)  
(Ω
)

0 1 2 3 4 5
Frequency (GHz)

(b)

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Im
 (Z

in
)  

(Ω
)



 109

z

y

b

-b

c

Probe 1

PEC

1d 2d 3d

1h 2h 3h

≈ ≈

≈

PEC

≈

Slot 1

Probe 2 Probe 3

Slot 2 Slot 3 Slot 4

c c

gV

gZ

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
Fig. 5-25. Input impedance at the base of probe 2. (a) Real part of impedance.            

(b) Imaginary part of impedance. 
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Fig. 5-26. EFS for Structure H. 
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5. CONCLUSIONS 

In this study, an analysis of thin-wire probes inside slotted rectangular cavities has 

been undertaken. The method of analysis is based on solving the coupled integral 

equations developed for the electric current on the probe and the equivalent magnetic 

current in the slot. Input impedance at the center of the slot and at the base of the probe is 

calculated for single, double, and triply cascaded rectangular cavities. The EFS is 

calculated at various positions in the cavity to predict the effect of the transmission 

path/environment on the entering transient signal. The theoretical calculations of 

resonances are compared to the numerical results and are found to be in good agreement.  
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